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Abstract

Graphical techniques for modeling the delxmdcncies  of random variables have been
explored in a variety of different areas including statistics, statistical physics, ar-
tificial intelligence (AI), speech recognition, image  processing, atld genetics. For-
malisms for manipulating these models have been developed relatively indepen-
dently in these research communities. In this paper we explox e hidden Markov
models (HMMs)  and related graphical structures within the general framework of
directed acyclic graphs (DAGs).  In particular we show that there exists a general
methodology for deriving an exact inference method for any DAG, that this algo-
rithm produces the well-known forward-backward and Viterbi algorithms as special
cases, and that the complexity of inference can be characterized for general families
of DAGs including HMMs which are augmented with non-local dependencies. Ap-
plications to problems such as speech recognition and biological sequence modeling .
are discussed.

1 Introduction +

A directed acyclic graph (DAG) is a graphical specification of the dependencies which exist among
a set of random variables, such that each node cc)rresponds to a random variable and each directed
link corresponds to a statement that the probability of the node at the tail of the link is dependent
on the node at the head of the link. In this paper, we are concerned with in~erence  problems
in DAGs: the calculation of posterior probabilities of variables of interest given observable data
and/or a specification of the graphical model, and the related task of MAP identification the
determination of the most likely state of unobserved variables, given observed variables. The learning
or estimation problem, where one determines the parameters (and possibly structure) of the model
from data is not addressed in any depth. Nonetheless, because inference is usually an “inner loop”
in the learning process (for example in expectation-maxi]) liZatiOn type algorithms), specification Of
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inference algorithms and results 011 their complexity have a direct bearing on the learning problem.

We examine a particular infercncc  algorithm for IIAGs wit]! arbitrary structures. The  probabilities
calculated by the algorithm are exact and not approximatio]ls. This algoritl,m,  dcvclopcd  by Jensen,
Lauritzen and Olcson (1989), hereafter rcfcrrcd  to as the JLO algorith]n,  is a descendant of a
I]aycsian-network  infcrencc  algorithm first described by Lau~ itzen and Spicgclhalter  (1 988). A C1OSCIY

related algorithm, developed by Dawid (1992), solves the MAP identification problcm  with the same
time complexity as JLO’S inference algorithm. Although the algorithms arc generic, we show that
their application to standard problems, such as the HMM, yields optimal o~ near-optimal asymptotic
performance. When applied to an HMM, for example, these algorithms recreate the well-known
forward-backward and Vitcrbi  algorithms in a more general context.

Furthermore, we usc the inference algorithm to derive the inference  complexity for a particular class
of graphical model structures-namely, that of an underlying first-order M arkov (or hidden Markov)
chain that also has some non-local dependencies between the variables. NoI~- local dependency models
of this sort are particularly suitable for practical problems wliere the physical structure of the problem

‘ dictates both a local Markov dependency and longer-range constraints (such as biological sequenm
modeling). One of the primary results of the paper is the identification of classes of non-local
models where the complexity of inference scales linearly rather than exponentially in the distance of
the non-local dependencies.

2 Inference in Arbitrary Directed Acyclic Graphs

In this section, we describe a special case of the inference algorithm for I)AGs described by JLO,
and mention the corresponding algorithm for MAP identification developed by Dawid (1992).

First, let us examine the special case of the inference problem, where we are given a DAG and
want to compute the probability distribution of a set of observations 0’ for the variables O in the
domain of the DAG. We illustrate the JLO algorithm for the simple I)AG over discrete variables
U={~l,...,~6 } shown in Figure la. The algorithm perfo]  ms inference in five steps: moralization,
triangulation, clique-tree formation, initialization, and pro]) agation.  Tbe first four steps are carried
out only once for a given DAG. The propagation step is carried out each time a new inference for
the given DAG is requested.

Moralizing a directed graph consists of adding undirected links between unconnected parents of
common children and then dropping the directionality on all links: the resulting non-directed graph
is known as a mod gmph.  Figure lb is the moral graph for Figure la. A graph is tn”angulatcd if
every cycle of length greater than three has a chord. 1 n the second step of the algorithm, links are
added to the moral graph of the given DAG until it is triangulated. We describe this step in more
detail later in this section. A triangulation of the DAG in Figure lb is shown in Figure lc.

The triangulation of the moral graph of the DAG defines a set  of cliques. maximal sets of variables
that are all pairwise linked. A clique tree is a tree where each node corrmponds  to a particular
clique obtained from the DAG triangulation, and arcs corulect nodes so as to guarantee the running
intersection pmpert~  if the same variable is present in two different cliques of the clique tree, then
that variable occurs in all cliques along the path between the two original cliques. In the third step
of the algorithm, wc construct a clique tree from the DAG triangulation, and (arbitrarily) choose
a root for the tree. We describe the construction of a clique tree in more detail shortly. A clique
tree corresponding to the cliques in Figure lC is shown in Figure Id.  Each node in the clique tree
is initialized to the joint probability distribution of the variables in that node, as determined by the
original DAG, using calibration operations as described below.

The propagation step of the algorithm itself has two phasw:  instantiate and collect. In the instanti-
ation phase, for each evidence variable that has been observed, wc find a clique (ideally, the smallest
clique) containing that variable, and set to zero the probal)ility  of any state in the joint distribution
of the marginal that is inconsistent with the observation. At this point, we do not rcnormalize  the
probabilities in the clique, although we continue to refer to thcm as probabilities.
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Figure 1: (a) A simple directed acyclic graph. (b) The  corresponding (undirected) moral graph. (c)
The corresponding triangulated graph. (d) The corresponding clique t~ ee. (e) The calibration step
when the top node is taken as the root.

In the collect  phase, messages are passed between variables so aa to calibrate the probabilities of the
cliques based on the changes made during initialization. In particular, calibrations proceed from the
leaves of the clique tree to its root as shown in Figure le.

To understand how to do calibration, suppose the probabilities of clique Cl have changed to p* (CI ),
either due to instantiation or to a previous calibration. Further, suppose we want to calibrate the
neighbor of Cl in the clique tree, say C2. Let Xl, X2, and 112 denote  the variables unique to Cl,
the variables unique to C2, and the intersection of Cl and Cz, respectively. That is, Cl = Xl U 112,
C 2 = X2 U 112, and Xl, X2, and 1] z are disjoint. First, we ]narginalize  the new distribution of Cl to
obtain the new distribution of 112:

p“(llz) = ~p*(L2, x1) = ~p”(cl)
xl xl

Then, we absorb the update into the joint distribution of Cz using the relation

p“ (112)
p“ (Cz) = p* (X2, 112) = p(x21~12)  P*(112) = P(C2) ~J(~~2j-

.

During the collect phase, if a node has more than one child, the node is calibrated sequentially by
each child.

It is not diflicult  to show that, after a clique C has been calibrated, p* (C) is equal to P(C, Ob = O~A
where ob is the subset of observations in O at or below C in the clique tree. Consequently, we can
obtain the probability of interest by summing the calibrated probabilities of the root clique Cr over
all states of C.:

p(o = o’) = ~p”(cr)
c.

The time complexity of propagation within the clique tree GT is

N<
C(GT) == 2S(G~)  = 2>;  Size(C;)

i= ]



where S(G7, ) is the sum over all cliques of the number of states in each clique,  NC is the number of
cliques in the tree, and si~c(Ci)  is the number of states in th(: joint space of Ci (equal to the product
over each variable in Ci of the number of states of each variable). Thus, for inference to be efficient, we
need to construct clique trees with small clique sizes. Problems of finding o] )tinmlly small clique trees
(e.g., finding the clique tree with the smaflcst  maximal clique) arc NI’-hard.  Nonetheless, Jensen
ct al. (1990) and other rcsearcbers  have identified a collcc[ion of good heuristics for constructing
clique trees from DAGs.

A simple greedy algorithm for triangulation is based on the fact that a graph is triangulated if
and only if all of its nodes can be eliminated, where a node can be elilninated  whenever all of its
neighbors are pairwise linked. Whenever a node is eliminated, it and its neighbors define a clique
in the clique tree that is eventually constructed. Thus, we can triangulate a graph and generate the
cliques for the clique tree by eliminating nodes in some order, adding links if necessary. If no node
can be eliminated without adding links, then we choose the node that can be eliminated by adding
the smallest number of links. If more than onc node can be eliminated, we choose the one that
creates the smallest clique. The links added by this algorithm applied to the graph in Figure lb are
shown in Figure lc.

A simple greedy algorithm for clique-tree construction is based ON the following fact. Define the
weight of a link between two cliques and the number of variablm  in their intersection. Then, a
tree of cliques will satisfy the running intersection property if and only if it is a spanning tree of
maximal weight. Thus, we can construct a clique tree by choosing successively a link of maximal
weight unless it creates a cycle. The clique tree constructed from the cliques defined by the DAG
triangulation in Figure lC is shown in Figure Id.

As we mentioned in the introduction, the Dawid algorithnl  for MAP identification is analogous to
the JLO inference algorithm. Namely, the same clique tree is used, and the propagation step is
replaced by a dynamic program. The time complexity of MAP identification is the same as that of
the inference.

3 Inference Applications

In this section, we consider a few real-world inference prol~lems,  and show that the JLO algorithm
combined with the simple heuristics for clique-tx ee const ] uction can provide inference algorithms
for HMMs and related structures which are optirnaf  or near-optimal in time complexity. Clearly
there are many other interesting graph structures used in applications such as signature analysis,
time-series modeling, etc., which are not discussed here.

3 .1  Hidden Markov Models
.

Figure 2a shows a hidden Markov  model (HMM) rcprmented  as a I)AG. The hidden and observable
nodes are h l ,.. .,lLNandol,.  ... ON, respectively. Figure 21) shows the c.orl csponding  (unique) cliqW
tree constructed by the heuristics described in the previous section. Assuming that each node in
the HMM has m states, the complexity of inference using JLO propagation is 0( JVrn2),  which is
risymptoticdly optimal. Furthermore, if we choose the clique  {hN - 1, hFJ } as the root of the clique
tree, then the collect steps carried out in the proper ordc) correspond directly to the operations in
tbc well-known forward-backward algorithm. Furthermore, Dawid’s h4AP identification algorithm
applied to this clique tree corresponds to the Viterbi  algorithm. (Formal proofs of these equivalences
arc omitted due to space). Note t}lat  both algorithms are clearly instances of dynamic programming,
but that the. Viterbi algorithm as used in HMM inference can be considered a special case of the
Dawid algorithm which works for arbitrary graphs. Note that the general equivalence of DAGs and
HMMs has  been noted by Buntine (1994) and Ib asconi and Bengio (1994) among others, although
the demonstration of equivalence of specific inference algc)rithms is new M far as we are aware.
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Figure 2: (a) A hidden Markov model. (b) A corresponding clique tree.
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Figure 3: (a) A modified hidden Markov moclel for speech recognition. (A directed version of the
graph in Saul and Jordan [1994]). (b) A corresponding clique tree.

3.2 Modified IIMMs for Speech Modeling

Figure 3a shows a modified hidden Markov model for speech recognition: the undirected version of
this graph was introduced by Saul and Jordan (1994) . The  model is modified so as to handle feature
sets with disparate time scales-in this case, a 2:1 disparity. The ~i and h~i are the ‘f~t” obser-vables
and  hiddens, the si and h si the corresponding slow ones. Figure 3b shows a corresponding clique
tree, again constructed by the algorithm described in the p] evious section. Assuming that @ node
in the HMM has m states, the complexity of inference using JLO propagation is O(Nm8),  whkh  is
the same complexity as an optimal inference algorithm. Although the clique tree in Figure 3b is not
unique, all clique trees for this DAG yield the sal ne infere~ ice complexity.

a
3.3 Modeling of Biological Sequences

DAGs in general are applicable to biological sequence modeling problems such as the alignment of
globular proteins. The standard HMM structure Figure 2a has previously been exploited by several
groups (e.g., Baldi et al, 1994) to perform protein aligurnent  in a way that captures first-order
sequence information. In the context of protein alignment, the hidden rloderr  hi represent so-called
insert and delete states, while the oi represent the match ltodes giving the probability of occurrence
of each amino acid at each location in the protein sequence.

Figure 4a represents a generalization to include the case of a modest number of overlapping long-
rangc  dcpendcncics.  Node o~+ 1 has a non-local dcpcndcncy  on observable node 01, and observable
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Figure 4: (a) A modified hidden Markov model for protein modeling. (b) A simplified version of
this model. (c) A corresponding clique tree.

node ON has a non-local depedency on observable node oj. These particular non-local dependencies
are complex enough that it is not obvious how to perform inference usir% this graph in -Y direct
manner (e.g., by extension of the forward backward algorithms), and yet the dependencies are simple
enough to permit discussion and analysis of the clique tree solution.

Figure 4b shows a simplified version of the original graph in Figure 4a. For the purposes of illus-
tration, the hidden and output units at each time step have been collapsed into a single node at
each time step. Let m2 = m.1 be the number of stat~~ per node in the new graph where m is the
number of states of the hidden nodes and 1 is the number of states of the observable (e.g., 1 = 4 for
DNA problems), Figure 4C shows a (non-unique) clique tree remlting from the application the JLO
algorithm to the DAG of Figure 4b. For th~ tree, SN = (N – 4)rn~ -t m~. Thus the complexity of
inference for this clique tree is O((IV + m2)mj)  which scales only linearly in IV, i.e., the complexity
does not scale exponentially in the “distance” (k or N – j) of the non-local dependencim.  Note again
that this relatively simple model with only two non-local dependencies is only used for illustrative
purposes: arbitrary numbers of non-local dependencies can be handled in general but the complexity
of inference seems likely to scale M a function of the numljer  of “intersecting” links. -.
Extensions such as these are extremely valuable in biological sequence analysis, as they can poten-
tially capture crucial non-local information which is known to reside in 3D macromolecular structure.
For example, techniques such as circular dichromism can often give information about a small num-
ber of non-local bonds between particular amino acids in a sequence. This information severe~
constrains the number of possible macromolecular configurations, with ensuing implications for the
alignment process. It can be judiciously introduced into the alignment process through the use of
dependencies such as those shown in Figure 4a. It is also possible that the even harder problem of
inferring which amino acids interact strongly with each other can be approached in this way, in a
manner similar to that used to investigate the process of protein folding itself. In a wider context,
non-local dependencies can also be used to model the tertiary (3D) structure of RNA molecules.
Standard approaches to this problem focus upon the mclre tractable issue of secondary structure,
and “align molecules using a recursive dynamic prograrmlling  algorithm. These methods, however,
exclude the consideration of sophisticated 3D structures such M pseudo knots which are known to
exist in RNA. A pseudo-knot is essentially a pair of overlapping non-local dependermncies  in the ,‘
argot of our paper.



4 ]nfercnce on Regular DAGs

In this section, We derive some specific results on the con lplcxity of infcl cnce for certain general
families of regular graphs. In all cases there is an underlying directed “chain” component to the
graph consisting of N discrete m– ary variables, *1, . . . . XIV,  where xi has  a link pointing to ~i+l,
1 < i < IV – 1. We are interested in the effect of additions to this gl aph to model non-local
dependencies. As a convenience, we define the complexity of inference per node as CN (G) = C(G)/N
for graph G. Also, as we noted in the previous two sections, we may be able to construct more than
one clique tree for a given DAG. Consequently, the identification of the complexity of inference for
a particular clique for a given graph results only ill an upper bouncl on inference complexity.

4 .1  l~idden Versus  “Non-I1idden”  M o d e l s

Consider an arbitrary graph G where CN (G~)  is known, i.e., in addition to the local links, the xi
can be connected as an arbitrary DAG. Now, consider that we construct a new DAG G* such that
for each xi in G, there is a directed link going from xi to a corresponding observable variable oi,
1< i < IV (we can assume the ~i’s are discrete, taking 1 values). This corrmponds  to a typical HMM
(e.g., for speech modeling) where the ~i are “hidden” or mlobserved,  but now, unlike the standard
first-order HMM, the underlying hidden process is not constrained to be a chain. The augmented
graph G* must have CN (G*) = CN (GTI) + O(m/)  by virtue of the fact that the clique tree for G*
is obtained from GT simply by adding the clique containing {~i, oi } to the graph and linking it to
any clique containing ~i and repeating this process for each  Oi. Thus, as long as the observable .
o i only have local dependence, the basic inference proper-tics of the hidden model can be derived as
extensions of those of the “non-hidden” model. Thus, the complexity remits below which are stated
for “non-hidden” models are directly relevant for hidden models where each observable only depends
on one hidden variable.

4.2 Locally-Bounded Dependencies

If a DAG G of “length” N can be decomposed into  ~ idcntic~ su~grai’hs  of “length” d, where
the subgraphs  are arbitrary DAGs with complexity CN (G~) for each, where there are no links
between subgraphs except from neighboring ~i to ~i+l, and  where the directions of all links in the
sub-graphs are from “left-t&right”  (for any link directed from Xj to Zk, wc must have k > ~), then
CN(G)  = CN(Gd)  + O(y). Thus, certain ‘decoupled” fornls of DAGs satisfy a basic decomposition
property in that the complexity of inference for the overall DAG scales in the same manner as the
local sub-graphs plus a term to account for the propagation of informaticm between sub-graphs.

4.3 ~$End-t~End~>  Dependencies

In addition to the underlying Markov chain, let there be an arbitrary number of directed links going
from the set of nodes x],.  . . , zk to the Set Of nodes ZN-ki 1, . . . . xN,  where 1 < k < N/2. Thus, in
the most complicated case the first k nodes can bc fully connected to the last k nodes in the chain.
l%om the resulting clique tree GT, the sum of the clique state spaccS is S(GT)  = m2k + (N – 2k)m3
and CN (GT) = 0(m2k /N) which scales exponentially in a factor proportional to the number of lon~
distance dependencies but not in N, the length oj the dependency.

4.4 Symmetric Patterns of Dependencies

In addition to the underlying Markov chain, let there be a set of symmctl  ic dependencies such that
there is a dependency from xi to ~N–i+l, 1 < z < N/z (assuming N is Cven).  BY redrawing this
graph in a folded manner so that xl appears above EN, etc., one can e%ily  determine the clique tree
structure for the problem: the resulting inference complexity CN (G7,)  :, O(m3 ). This is another
example of a DAG structure where the dependency links in the graph do not intersect and the
complexity of inference dots not depend on the number of non-local depclldc~lcics or their length.
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5 Related Topics and Conclusion

Due to space constraints we can only briefly mention a number of related topics which we are
currently investigating. The propagation phases of the JLO procedure (e.g., the calculation of like-
lihoods given observed evidence) can be carried out in a con[pletely  10M1 manner suggesting parallel
implementations of inference algorithms for certain applications. In addition, we are exploring the
applicability of local clique tree methods to the learning problem. The results in the paper are
described for discrete-valued variables: there are obvious extensions to include real-valued variables
which will depend on the nature of the density functions and the dependence of the real-valued
variables on other variablm--for  example it should be possible to include “non-parametric” black
boxes such as feedforward neural networks in certain parts of the graph. Finally, it is of significant
interest to try to extend this approach to undirected graphs (Markov  random fields) -we have so far
found that certain technical difficulties prevent a direct mapping of the methods described in this
paper.
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